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Hervé Baumann1, Pierluigi Crescenzi2 et Pierre Fraigniaud3

1 University Paris Diderot. Email : herve.baumann@liafa.jussieu.fr
2 University of Florence.
3 CNRS and Univ. Paris Diderot. Email : pierre.fraigniaud@liafa.jussieu.fr

Cette note résume nos travaux sur l’inondation dans les réseaux dynamiques. Ces derniers sont définis à partir d’un
processus Markovien de paramètres p et q générant des séquences de graphes (G0,G1,G2, . . .) sur un même ensemble
[n] de sommets, et tels que Gt est obtenu à partir de Gt−1 comme suit : si e /∈ E(Gt−1) alors e ∈ E(Gt) avec probabilité
p, et si e ∈ E(Gt−1) alors e /∈ E(Gt) avec probabilité q. Clementi et al. (PODC 2008) ont analysé différent processus de
diffusion de l’information dans de tels réseaux, et ont en particulier établi un ensemble de bornes sur les performances
de l’inondation. L’inondation consiste en un protocole élémentaire où chaque nœud apprenant une information à un
temps t la retransmet à tous ses voisins à toutes les étapes suivantes. Evidemment, en dépit de ses avantages en terme de
simplicité et de robustesse, le protocole d’inondation souffre d’une utilisation abusive des ressources en bande passante.
Dans cette note, nous montrons que l’inondation dans les réseaux dynamiques peut être mis en œuvre de façon à limiter
le nombre de retransmissions d’une même information, tout en préservant les performances en termes du temps mis
par une information pour atteindre tous les nœuds du réseau. La principale difficulté de notre étude réside dans les
dépendances temporelles entre les connexions du réseaux à différentes étapes de temps.
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1 Introduction
Gossip protocols have been identified as simple, efficient, and robust mechanisms for various network

and system tasks, such as, e.g., multicast, resource location, and distributed databases management. In pa-
rallel, the epidemiology community has considered several models for the analysis of the spreading of an
infection in a population. These models include the famous SIR (Susceptible-Infective-Removed) and SIS
(Susceptible-Infective-Susceptible) models, aiming at capturing the way a virus disseminates in a popula-
tion as a function of the reaction to the virus experienced by every people. Gossip (and epidemic) protocols
tolerate a high degree of dynamism in their running environment. It is therefore of premier importance to
evaluate the precise impact of this dynamism on the efficiency of the gossip protocols. It is indeed known
that network dynamics can have a tremendous impact in certain circumstances. This impact can be quite
positive whenever the network evolution is ergodic (e.g., when measuring the global bandwidth of an ad
hoc radio network [GT02]), but also quite negative whenever the network evolution is arbitrary (e.g., when
measuring the cover time of random walks [AKL08]).

In the framework of gossip protocols and epidemiology, one way to handle dynamism is to assume
that the network evolves with time as a sequence (G0,G1,G2, . . .) of graphs on the same set of vertices,
where the graph Gt considered at time t is an Erdös-Renyi random graph drawn in Gn,p. In this model,
several investigations have been recently performed to measure the impact of the network evolution on the
performances of algorithms. For instance, it was proved that radio broadcasting performs efficiently, even
for p below the connectivity threshold of Gn,p (see [CMPS07]). In [AKL08] it is proved that the cover time
of a random walk remains polynomial for any p > 0. Threshold phenomena have also been identified ; for
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instance, it was proved that SIR epidemic only contaminates a constant number of nodes if p = c/n with
c < 1, but contaminate a constant fraction of the nodes if c > 1 (see [DGM06]).

In term of modeling real world networks, the elementary random process (G0,G1,G2, . . .) with Gt ∈Gn,p
suffers from the absence of time dependencies. The network does evolve but the structure of the network
at time t is independent from its structure at time t ′ < t. This does not precisely reflect what is observed
in many contexts such as wireless networks (the connection between two nodes is highly correlated to
the previous existence of this connection) and P2P networks (the occurrence of an information exchange
between two participants is highly correlated to the existence of previous exchanges). A more evolved
model capturing time-dependencies has been recently considered in [CMM+08, CMPS09]. Similarly to
the elementary random process, the model, called edge-Markovian process, and denoted Mn,p,q, generates
a random sequence of graphs (G0,G1,G2, . . .) on the same node set [n]. This sequence is set based on a
birth-rate p and death-rate q as follows§ : G0 is an Erdös-Renyi random graph in Gn,p̂ where p̂ = p/(p+q),
and, for any t > 0, a non-existing edge e /∈ E(Gt−1) exists in E(Gt) with probability p, while an existing
edge e ∈ E(Gt−1) disappears from E(Gt) with probability q.

In their companion papers [CMM+08, CMPS09], Clementi et al. analyzed the flooding protocol in edge-
Markovian dynamic graphs, i.e., in graph sequences generated by the edge-Markovian process. Flooding in
dynamic graphs is the gossip mechanism in which every node becoming aware of an information at step t
forwards this information to all its neighbors at all forthcoming steps t ′ > t. Flooding is a core mechanism
for information dissemination in contexts in which the network topology is highly dynamic and unknown,
such as P2P networks, mobile networks, or any networks susceptible to faults, and several variants of
flooding designed to limit the bandwidth consumption have been proposed [CL07, LCC+02]. Clementi et
al. produced several bounds on the flooding time in edge-Markovian dynamic graphs. In particular they
proved that there is a wide class of dynamic graphs in which the flooding time does not (asymptotically)
depends on the edge death-rate q.

Despite the interests of flooding in term of simplicity and robustness, this protocol suffers from a severe
drawback in dynamic graphs : it requires every node, upon reception of a source message, to forward
this message during all forthcoming time steps. This results in a waste of resources in terms both of link
bandwidth and node computation. Of course, if one knows that flooding completes in T time steps, then
all nodes can be bounded to be active for only this amount of time. Nevertheless, T is typically growing
with the size n of the network, hence been active T steps still results in a significant waste of resources. Our
objective is to force flooding to perform more parsimoniously, by limiting the number of steps during which
every node is active in forwarding a message to its neighbors, yet allowing the message to eventually reach
all nodes in short time. Parsimonious flooding enables to save bandwidth and computational resources, and
potentially energy as well, the latter parameter being known to be crucial for ad hoc and sensor networks.

Previous work.
There is a vast body of literature on broadcast and gossip protocols in static networks. Broadcasting in

random graphs Gn,p has been analyzed in [FPRU90, FG85, Pit87], and randomized gossip protocols in
specific metrics have been analyzed in [KKD01, KK02]. In all these cases, there are no time-dependencies
induced by any evolution of the network structure.

Several papers tackle information spreading problems in the context of wireless networks (see, e.g.,
[CLF+07, SD09]) but the time-dependencies are either ignored, or overcame by assuming sufficiently long
time slots for these dependencies to become negligible. In fact, the only information spreading work we
are aware of, dealing explicitly with time-dependencies regarding the presence of the links, is [CMM+08,
CMPS09]. In the former, the model is the one considered in this paper, i.e., edge-Markovian dynamic
graphs. In the latter, the authors consider other types of Markovian dynamics, including the geometric
Markovian evolving graphs, and give general bounds on the flooding time in Markovian dynamic graphs
satisfying certain expansion properties.

More specifically, it is proved in [CMM+08] that, for any initial graph G0 (i.e., not necessarily G0 ∈Gn,p̂),
and any birth-rate and death-rate 0 < p,q < 1, the flooding time in edge-Markovian graphs is at most
§ The general definition in [CMM+08] assumes that G0 can be arbitrary, and the definition of edge-Markovian evolving graphs given

here is called stationary edge-Markovian evolving graphs in [CMPS09].
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O(logn/ log(1 + np)). For the stable graph G0 (i.e., E(G0) = /0), it is proved that, for any 0 < p,q < 1,
the flooding time is at least Ω(logn/np)), and if p ≥ c logn/n for c > 1 then the flooding time is at least
Ω(logn/ log(1 + np). The case G0 ∈ Gn,p̂ is considered in [CMPS09], where it is proved that for p̂ ≥
c logn/n with c large enough, the flooding time is at most O( logn

lognp̂ + log lognp̂) and at least Ω( logn
lognp̂ ).

2 Parsimonious flooding
For a positive integer k, we say that a flooding protocol (in dynamic graphs) is k-active if each node

forwards a source message only during the k time steps immediately following the step at which the node
receives that message for the first time. For instance, the 1-active flooding protocol is the standard flooding
protocol for static networks : a message is forwarded only once, at the step immediately following its
reception. However, in dynamic networks, the flooding protocol may have to be active for k > 1 steps in
order for the message to reach all nodes. The smaller the parameter k, the lesser the resource consumption
by the protocol.

Our objective is to determine the minimum k for which the k-active flooding protocol completes correctly,
i.e., the message eventually reaches all nodes. We define the reachability threshold for the flooding protocol
in Mn,p,q as the smallest integer k such that, for any source s ∈ [n], the k-active flooding protocol from s
completes correctly almost surely¶. Clearly if flooding completes in T steps in Mn,p,q, then the reachability
threshold of flooding in Mn,p,q is at most T . But in fact, we will show that, for a large spectrum of parameters
p and q, the reachability threshold is just o(T ), and often even just constant. Moreover, we will also show
that being active for a number of steps equal to the reachability threshold (up to a multiplicative constant)
is sufficient for the flooding protocol to complete in optimal time, i.e., in asymptotically the same number
of steps as when being perpetually active.

3 Our results
In this paper, we first revisit the results in [CMM+08, CMPS09], and we give tight bounds on the flooding

time (without any bound on the activity constraints) for all possible values of p,q ∈ (0,1) whenever G0 ∈
Gn,p̂. These bounds are summarized in Table 1, where p̂ = p

p+q . For p̂≥ c logn
n with c > 1, flooding performs,

a.s., in Θ( logn
log(np̂) ) rounds. For 0 < p̂ ≤ c

n with c > 0, flooding a.s. performs in Θ( logn
np ) rounds. In between,

the situation is more complex, and depends on the relative values of p̂ and p (see Table 1). If np ≥ lognp̂
then the flooding time is Θ( logn

log(np̂) ), whereas if np≤ lognp̂ then the flooding time is Θ( logn
np ).

In parallel to the computation of the bounds on the flooding time, we have established tight bounds on
the reachability threshold. If p̂ ≥ c logn

n with c > 1, then this parameter is equal to 1. That is, just one step
of activity is enough to make sure that, a.s., the message reaches all nodes. If p̂ ≤ c logn

n with c < 1, then
the reachability threshold is Θ( logn

np ). (Note that the condition is on p̂ while the value for the reachability
threshold depends on p).

Interestingly enough, for any p,q ∈ (0,1), we also prove that if k is the activity threshold, then, a.s., an
O(k)-active flooding protocol completes in the same time as flooding without constraints on the activity, up
to a multiplicative constant. In other words, the reachability threshold for the flooding protocol is essentially
of the same order of magnitude as the activity threshold for this protocol to complete in optimal time, up to
multiplicative constants. In particular, for p̂≥ c logn

n with c > 1, one step of activity is sufficient for flooding
to complete in optimal time. Similarly, for 1

n � p̂ ≤ c logn
n with c < 1, and np ≥ lognp̂, the reachability

threshold Θ( logn
np ) is significantly smaller than the optimal flooding time Θ( logn

log(np̂) ), yet being active for

O( logn
np ) steps is sufficient for flooding to complete in asymptotically optimal time O( logn

log(np̂) ). For all the
remaining cases, the thresholds for completion and for optimality coincide, up to multiplicative constants.

¶ A series of events En holds almost surely (a.s.) if Pr[En]→ 1 when n → ∞, i.e., Pr[En] = 1− o(1). These events holds with high
probability (w.h.p.) if Pr[En]≥ 1−O( 1

nα ) for some α > 0.
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0 < p̂≤ c
n , c > 0 1

n � p̂≤ c logn
n , c < 1 p̂≥ c logn

n , c > 1

np≤ lognp̂ np≥ lognp̂

Flooding time Θ( logn
np ) Θ( logn

np ) Θ( logn
log(np̂) ) Θ( logn

log(np̂) )

Reachability threshold Θ( logn
np ) Θ( logn

np ) Θ( logn
np ) 1

TAB. 1: Summary of results
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